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A B S T R A C T   

Severe public crisis such COVID-19 pandemic entail coordinated communication between politicians and public 
health agencies. The study explores how and why U.S. politicians share messages from health agencies on social 
media during COVID. Proposing a multi-theoretical, multi-level (MTML) framework to understand the phe
nomenon, we draw upon the Advocacy Coalition Framework and Crisis and Emergency Risk Communication 
theory and conceptualize politicians’ public health communication as serving the dual functions of policy and 
risk communication. With bipartite longitudinal network modeling, our analysis finds a fragmented national 
message-sharing network deprived of central federal leadership and clustered around state-level actors such as 
local health agencies and state governors. The politicians’ party affiliation and positions on COVID-19 policies 
significantly impacted whether they would help distribute messages from public health agencies. Health 
agencies’ message features such as expression of certainty and use of analytical words also influenced politicians’ 
message sharing patterns. These findings suggest the pandemic communication is both a policy advocacy and a 
risk and crisis communication process. This integrated theoretical approach offers explanations of information 
sharing dynamics between politicians and health agencies, two major information sources for the public.   

1. Introduction 

When faced with COVID-19 pandemic, one of the worst public health 
crises in the 21st century (John Hopkins University, 2020), the wide
spread misinformation regarding its cause and solution not only en
dangers individuals’ health choices but also thwarts large-scale public 
health efforts. For example, many people believe that bleach is an 
effective treatment for the coronavirus (Reimann, 2020). The lack of 
relevant knowledge (Li et al., 2022) and the politicization of the 
pandemic (Robertson et al., 2021) further obstruct the debunking of 
pandemic-related misinformation. To simultaneously address the 
pandemic-infodemic, communication is an indispensable component in 
disseminating scientific evidence, informing policy arguments, and 
facilitating coordination (Atouba & Shumate, 2010). 

Informing the public timely and accurately is a key step in combating 

the pandemic-infodemic. Public health agencies cannot single-handedly 
deliver effective public health messages and motivate sufficient public 
compliance without the support from other prominent social actors such 
as elite politicians (Robertson et al., 2021). Especially when a public 
health crisis is heavily politicized (Zhou et al., 2023), politicians are 
important communicators. Political elites occupy central roles in the 
hierarchy of influence on traditional and digital information systems 
(Shoemaker & Reese, 2013) as their institutional positions allow them to 
influence other elites, who in turn affect the media and the public 
(Entman, 2003). During the pandemic, politicians’ messages and actions 
powerfully influence news agenda and shape public opinion in profound 
ways (e.g., Robertson et al., 2021; Zhou et al., 2023). Therefore, the 
public health agencies’ pandemic communication can be more effective 
if the politicians offer support and share messages consistent with 
agencies’ stances. 
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Previous literature has explored how public agencies (Kim et al., 
2021; Malik et al., 2021) and the government (Zhou et al., 2022) might 
increase public engagement in the communication process during the 
pandemic. However, little is known about what factors drive politicians’ 
spread or neglect of public health agencies’ messages, two important 
information sources for many. Understanding the information-sharing 
pattern between politicians and health agencies complements the 
landscape of pandemic information ecology and offer insights into how 
the public received their messages. The current research thus fills this 
research gap by identifying the factors that explain how politicians share 
public health agencies’ messages during the pandemic. 

We draw from a social network perspective with a multi-theoretical, 
multi-level (MTML) framework (Monge & Contractor, 2003), which 
brings together complementary theories to offer holistic explanations. 
Focusing on social-mediated communication, we argue that a network 
approach is required to understand the dynamics between groups of 
actors as numerous studies have demonstrated that information sharing 
dynamic is governed by the relationship among communicators as (e.g., 
Borgatti et al., 2009; Heaney & Rojas, 2008; Henry, 2011; Malinick 
et al., 2013). In addition, it is unrealistic to assume that politicians’ 
communication of health messages are driven by any single reason. It is 
likely that public health and political interests intertwine and co-shape 
their communication choices. Nevertheless, communication theories 
and research are often segmented by boundaries of subfields, making 
MTML a useful perspective to integrate multiple theoretical perspectives 
to explicate complex social realities. 

Guided by MTML, we integrate the Advocacy Coalition Framework 
(ACF) (Jenkins-Smith & Sabatier, 2003; Sabatier & Jenkins-Smith, 
1988) and Crisis and Emergency Risk Communication (CERC) frame
work (Reynolds & Seeger, 2005; Seeger et al., 2010) to explain the dual 
logic of politicians’ sharing of health messages in a networked fashion. 
Specifically, ACF suggests that politicians’ communication patterns are 
governed by their political ideologies and public policy positions; 
whereas CERC postulates that their communication should be based on 
the needs to enhance the publics’ certainty and sensemaking in times of 
crisis. This integrated framework helps us better account for the inter
twinement of policy advocacy and public health communication in 
politicians’ communication behavior on social media, the essential 
communicational channel for information dissemination during the 
pandemic (Kim et al., 2021; Zhou et al., 2023). 

Utilizing a large dataset from Twitter, we operationalized our 
message-sharing networks as bipartite networks between health 
agencies and politicians as they are two types of entities driven by 
different operational logic. We applied Stochastic Actor-Oriented Model 
(SAOM) to model the longitudinal evolution of politicians’ sharing of 
messages from health agencies. 

The rest of this article starts from explicating why an MTML frame
work is essential to explain the communication ties between politicians 
and health agencies. Specifically, we unpack the ACF and the CERC and 
develop hypotheses and research question from respective theories. 
Then, we provide details of data collection, network construction, and 
modeling strategies followed by the results of empirical network 
modeling. Finally, we discuss how our integrated theoretical perspective 
offers insights into the complexities of the communication over COVID- 
19 among politicians and health agencies. Directions for future research 
of bridging distinctive scholarly traditions and limitations of this study 
are also reflected. 

2. A multi-theoretical multi-level network approach to social- 
mediated communication 

We situate our study of politicians’ sharing of public health agencies’ 
messages on social media within a social network perspective. Social 
networks refer to any types of social entities (e.g., individuals, organi
zations, countries) and the relationships among them. With growing 
popularity across disciplines, social network research has emerged as a 

field consisting of distinctive theories and methodologies (Scott & Car
rington, 2011). The uniqueness of the network perspective is its focus on 
the emergence, maintenance, and decline of connectivity and flows 
among communication actors (Borgatti et al., 2009; Monge & 
Contractor, 2003). 

In our study, we conceptualize politicians’ tweeting of messages 
from public health agencies as a two-mode network, which is a network 
formed by two types of entities and the relationships between them 
(Malinick et al., 2013). Politicians and heath agencies are conceptual
ized as two different entities as the former has motivations to politicize 
the issue than merely communicating risks as evidenced by recent 
studies (e.g., Zhou et al., 2023). While scholars have identified the 
different mechanism through which politicians and health agencies 
engage with the public separately during the pandemic (Kim et al., 2021; 
Zhang & Cozma, 2022; Zhou et al., 2023), how politicians retweet 
certain health agencies’ messages is less known. The communication 
process may depend on a range of factors such as their relationship with 
specific health agencies and how their peers have responded to these 
agencies. This complex and dynamic process is an admixture of public 
health risk and policy advocacy communication. Theoretically, the 
complexity of the situation requires theories that account for different 
set of factors. The MTML approach is therefore valuable as the structural 
tendencies of a complex network are unlikely to be explained by a single 
theory, and require an integration of multiple theories. 

The MTML framework has been to understand interorganizational 
networks (Atouba & Shumate, 2010) and scholars consistently support 
the value of integrated theories (Malinick et al., 2013). In our study, we 
incorporate two theoretical frameworks to address different dimensions 
of the communication process. Methodologically, we recognizes the 
differences between the two types of entities while modeling their in
terdependencies. In addition, communication networks are not static 
entities. As the pandemic continued to evolve, so did health agencies’ 
recommendations and politicians’ positions on response policies. Recent 
developments in computational methods have advanced two-mode 
network analysis over time and thus allow us to examine how 
evolving conditions could shape changes in the networks and commu
nication outcomes (Ripley et al., 2020). In the following sections, we 
introduce two complementary theories to guide our study. 

2.1. Politicians’ political advocacy networks on social media 

The political advocacy coalition framework (ACF hereafter) was 
developed by Sabatier and Jenkins-Smith (1988, 2003)to explain how 
coalition networks with different political interests compete over com
plex policies. ACF posits that at any given time, different stakeholders 
would take interest in a wide range of policies. Policy stakeholders of the 
same policy issue form a policy subsystem (Pierce et al., 2017). The 
concept of networks is central to ACF (Weible, 2005). According to ACF, 
promoting and implementing public policies such as COVID-19 re
sponses often require coordination among policy stakeholders con
nected by complex relationships. Different coalitions could exist within, 
between, and outside of political parties. ACF assumes that stakeholders 
cluster together based on shared beliefs and interests and that such 
clustering pattern empowers these actors’ advocacy (Jenkins-Smith & 
Sabatier, 2003; Sabatier & Jenkins-Smith, 1988). 

Within-coalition networks are crucial for like-minded stakeholders 
to build trust, access resources (e.g., intelligence, expertise, and advice), 
and coordinate their actions against competing coalitions (Heaney & 
Rojas, 2008; Weible, 2005), which can be formal or informal. For 
example, actors can “join” a coalition by communicating with other 
members, developing common strategies, and coordinating actions to 
achieve shared goals. Between competing coalitions, networks provide 
the crucial infrastructure to win the competition and expand the influ
ence of specific coalitions (Yang et al., 2021). ACF suggests that the 
formation and competition between these coalition networks could 
determine policy processes and outcomes. Previous studies have 
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mapped the network structure of advocacy coalitions (Heaney & Rojas, 
2008) and showed that coordination and information exchanges occur 
primarily within coalitions (Weible, 2005). 

ACF identifies three main antecedents that shape network formation: 
party affiliation, access to resources, and policy core beliefs. We further 
expand on each of the antecedents below. 

2.1.1. Party affiliation 
According to ACF, party affiliation could shape a coalition network 

based on several mechanisms. First, party affiliation may influence ac
tors’ relationship building based on the mechanism of homophily. 
Homophily refers to the tendency of networked actors to interact with 
others of similar backgrounds (McPherson et al., 2001). Among politi
cians, studies found that they are significantly more likely to engage 
with those who share identical party affiliations than their political 
opponents (Valle et al., 2018). 

Second, a party can be viewed as a network of cooperating actors 
whose interests tend to align with one another (Koger et al., 2009). The 
COVID-19 pandemic occurred concurrently with the 2020 Presidential 
Election, which featured divisive campaigns. It is likely that in this 
polarizing political environment (Robertson et al., 2021; Zhou et al., 
2023), party affiliation could powerfully shape politicians’ behaviors 
out of political goals and personal interests. Party affiliation has been 
found as a strong and consistent predictor of how policy networks 
interact and form coalitions both online and offline (Valle et al., 2018). 
Research shows that political interactions are effective indicators for 
classifying the ideological orientations of both political actors and or
dinary people (Barberá, 2015). 

When it comes to how party affiliation influences politicians’ 
retweeting of health agencies’ messages, the homophily effect cannot be 
directly modelled as the interactions occur between politicians and 
health agencies. However, due to the public visibility of politicians’ 
tweets, other politicians could still watch how their party members 
tweet and conform to such party norms. As such, we expect that party 
affiliation guides politicians’ message sharing behaviors on social 
media. 

H1. Politicians are more likely to share messages from health agencies 
if those agencies’ tweets were retweeted by politicians of the same party 
than those of a different party. 

2.1.2. Access to resources 
Gaining access or control of critical resources could affect the out

comes of policy advocacy (Weible, 2005). Therefore, in the process of 
building coalition networks, actors are motivated to gain access to re
sources to strengthen coalitions, elevate status, and achieve political 
goals (Sabatier & Weible, 2007). Studies have examined the impact of 
resources on coalition building. Henry (2011) examined coalitions in 
California regional planning and found that the formation of a policy 
coalition network can be explained by both actors’ similarity in ideology 
and resource-seeking behaviors. On the other hand, politicians who 
have access to more resources are likely to be more active in building 
coalitions (Sabatier & Weible, 2007). 

ACF recognizes that a variety of resources could shape politicians’ 
decisions in terms of who to connect with. Such resources include po
litical positions, public opinions, information, financial resources, and 
leadership. In this study, we consider the impact of both politicians’ and 
health agencies’ political or institutional positions and financial re
sources. Politicians may hold different political positions (parliamentary 
politicians vs. governors) which could be backed by different levels of 
financial support. Health agencies also have different institutional po
sitions (i.e., different levels of jurisdictions ranging from sub-state, state, 
to regional, and federal) and corresponding budgets. 

ACF suggests that politicians with more resources are in favorable 
positions to develop new network ties. It is likely that they are more 
willing to share messages from health agencies. Moreover, actors with 

more resources can be attractive partners in coalition networks because 
the connection with resourceful actors could potentially provide access 
to critical resources and elevate one’s own status (Sabatier & Weible, 
2007). Since health agencies possess different levels of resources, 
sharing messages from resourceful agencies may connect politicians 
with important allies and elevate their status. We propose the following 
hypotheses. 

H2a. Politicians with more financial resources are more likely to share 
messages from health agencies. 

H2b. Politicians are more likely to share messages from health 
agencies that possess more financial resources. 

In addition, politicians may hold different political positions (par
liamentary politicians vs. governors). Although ACF recognizes these 
positions as different, the theory does not predict which type of positions 
are more favorable or how politicians in different positions behave. 
Therefore, to explore if politicians with different political positions 
retweet differently, we propose the following research question. 

Research Question (RQ): How do politicians with different political 
positions share messages from health agencies with different levels of 
jurisdictions? 

2.1.3. Policy core beliefs 
Policy core beliefs refer to normative and causal perceptions about a 

policy subsystem (Jenkins-Smith & Sabatier, 2003; Sabatier & 
Jenkins-Smith, 1988). ACF conceptualizes that policy positions could 
evolve and change throughout the advocacy process. This concept thus 
is valuable for understanding the evolution of politicians’ communica
tion patterns regarding COVID-19 response policies. 

Policy core beliefs are the principal glue for holding advocacy co
alitions together and provide a rationale for coordinating behaviors to 
influence policies. For instance, in terms of how to respond to COVID-19, 
there are competing perspectives on appropriate public policies. While 
some politicians argued that the public needed to practice strict “stay-at- 
home” policies, others were more concerned about the health of the 
economy and pushed for reopening. ACF suggests that actors sharing the 
same policy core beliefs are likely to form coalitions, and dominant 
coalitions are more likely to translate their goals into policy than mi
nority coalitions (Jenkins-Smith & Sabatier, 2003; Sabatier & 
Jenkins-Smith, 1988). 

Although ACF assumes that policy core beliefs are difficult to change, 
the framework also acknowledges that policy learning occurs through 
exposure to new information and new contacts (Grossback et al., 2004). 
This means politicians’ COVID-19 public policy beliefs may gradually 
evolve and influence their network positions. Politicians are more likely 
to relay the same messages that are consistent with their own policy 
beliefs, and such policy positions could change over time. Hence, we 
propose. 

H3. Over time, politicians are more likely to share messages from 
health agencies that are congruent with their own COVID-19 policy 
positions on social media. 

So far, we have discussed a theoretical framework that could explain 
political actors’ relationship-building behaviors related to policy. 
However, the COVID-19 is also a public health crisis, which requires 
politicians to work with health agencies and communicate crisis and 
risk-related facts. We now turn to the Crisis and Emergency Risk 
Communication Model. 

2.2. Crisis and Emergency Risk Communication on social media 

In times of public health crises, public health agencies are expected 
to effectively convey health risks and threats to individuals and com
munities, and provide a framework for the public to understand and 
respond to them (Austin et al., 2012). The Crisis and Emergency Risk 
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Communication theory (CERC, Reynolds & Seeger, 2005; Seeger et al., 
2010; Veil et al., 2008) offers valuable insights on key elements of risk 
communication. According to CERC, when communicating about public 
health risks, communicators should help “the public, agencies, and other 
stakeholders to make sense of uncertain and equivocal situations and 
make choices about how to manage and reduce the threats to their 
health” (Veil et al., 2008). 

Most importantly, the CERC model argues that reducing uncertainty 
and improving sensemaking could improve communication outcomes. 
Uncertainty refers to “having a number of possible alternative pre
dictions or explanations” (Berger & Calabrese, 1975). Uncertainty 
reduction is the action of increasing the ability to predict and explain 
ongoing crises (Berger & Calabrese, 1975). Sensemaking is an in
dividual’s ability to make sense of their circumstances (Weick, 1995). 
Uncertainty reduction and sensemaking could be enhanced through the 
manipulation of communication messages (Reynolds & Seeger, 2005). 
Guided by CERC, previous literature has examined how leading health 
agencies engage with the public during the pandemic on social media 
(Malik et al., 2021). However, how the messages might engage with elite 
communicators such as politicians is less studied. In this study, we 
propose that health agencies’ messages with linguistic features that may 
reduce the public’s uncertainty and sensemaking may attract more 
engagement from politicians. 

2.2.1. Use of certainty expression 
Crisis events concerning public health can place consequential stress 

and uncertainty on the population. Effective communication from 
health agencies is critical to aid in the arising threat and uncertainty. 
The CERC model highlights uncertainty reduction as a key communi
cation goal during the initial event phase and maintenance phase of a 
crisis. The process should allow the audience to obtain a basic under
standing of what happened so that they may act properly (Reynolds & 
Seeger, 2005). Messages that express high levels of certainty may 
enhance people’s belief in these messages and intentions to adopt the 
advocated behaviors (Han et al., 2007). As such, elected officials may 
share messages that express a high level of certainty to help their fol
lowers and constituents to better make sense of the crisis. Therefore, we 
propose. 

H4. Politicians are more likely to share messages from health agencies 
that express higher levels of certainty. 

2.2.2. Sensemaking 
During crises, messages that encourage sensemaking should help the 

public understand the scope of a crisis, accommodate the unexpected, 
and seek relevant information (Weick, 1995). Sensemaking messages as 
those that “contained information about the number of people infected, 
the number of deaths, the spread of the virus, vaccine development, and 
the likelihood of human-to-human transmission” (Vos & Buckner, 2016, 
p. 304). Sensemaking requires the use of scientific evidence in an 
analytical and accurate way. For example, in a study that examined how 
health agencies use Twitter to help publics make sense of H1N1, Vos and 
Buckner found that tweets containing numerical evidence and analytic 
language are significantly more likely to be retweeted. As pinpointing 
the scientific evidence in the tweets in a large-scale corpus is hardy 
feasible, we choose the use of number as one of the two indicator of 
sensemaking. As such, we propose that politicians are more likely to 
retweet health agencies when their messages contain more numbers or 
analytic language. 

H5. Politicians are more likely to share messages from health agencies 
that use more numbers and analytic words. 

3. Method 

3.1. Data 

Our bipartite (politician-health agency) network was extracted from 
a large public COVID-19 Twitter dataset (Chen et al., 2020).1 The data 
were collected between January 22 and October 31, 2020. We chose this 
time period because the first COVID cases emerged on January 21. 
COVID-related topics remained a salient topic on social media until the 
U.S. presidential election took away its spotlight in early November 
2020. Twitter was selected as it is one of the major platforms for poli
ticians and health agencies to communicate with the public (Zhang & 
Cozma, 2022). To construct the network, we started with a list of 581 U. 
S. official Twitter accounts of legislators and governors and 83 health 
agencies including The Centers for Disease Control and Prevention 
(CDC) and state- and regional-level of public health departments in the 
U.S. (see Appendix B).2 Next, we collected all tweets and retweets that 
originated from the list of politicians and health agencies from the 
COVID-19 Twitter dataset. A tie was identified when a politician 
retweeted a message sent by a health agency. The network was directed 
because we were interested in the formation and dissolution of 
retweeting behavior. 

To examine the longitudinal evolution of the bipartite network, we 
broke down the network into three periods: 1) January 22 – February 
29, 2) March 1 – June 12, and 3) June 13 – October 31. The three periods 
were divided based on observations of critical events and validated by 
quantitative network change patterns. To explore network change pat
terns, we extracted the network on each day and calculated the Jaccard 
index3 of every pair of networks in two adjacent days. A shift in the scale 
of the Jaccard index indicates a statistically significant change in 
network between two periods. See Appendix C for details of the Jaccard 
analysis. Fig. 1 shows the pipeline of data processing, which was con
ducted in R 4.2.3. 

We aggregated all ties within each period. If a politician i retweeted a 
health agency j during the first period, we defined a tie linked i to j in the 
first period. If i did not retweet j in the second period, there would be no 
tie between i and j during the period. Fig. 2 shows the visualization of 
the retweet networks for three periods (the figures were generated by 
the Python library Matplotlib). Additionally, we investigated the dis
tribution of ties in our networks and discovered, by and large, the dis
tribution of tie strength is largely sparse. We have included a figure of 
the distribution of tie strength in Appendix D. 

3.2. Measures 

3.2.1. Party affiliation 
Politicians’ political affiliation was extracted from Campaign 

Finance Institute (2020) . This variable is a categorical variable with 1 =
Republican (N = 272, 46.8%) and 2 = Democratic (N = 305, 52.5%). As 
we are focusing on party affiliation alignment, we coded third-party (N 
= 3, 0.5%) and nonpartisan (N = 1, 0.2%) as missing for better data 
interpretation. 

1 The COVID-19 Twitter dataset (Chen et al., 2020) contained tweets that are 
related to coronavirus. Data collection started on January 22, 2020, and is still 
ongoing as of early March 2021. For the list of 76 keywords and phrases and 
date for data collection, see Appendix A. The details of data collection and data 
hydrating can be found on Github repository https://github.com/echen10 
2/COVID-19-TweetIDs. Users need either Hydrator or Twarc to retrieve the 
original tweets based on the tweet IDs stored on the repository.  

2 The list was compiled from resources including HHS Organizational Chart 
and State & Territorial Health Department Websites.  

3 The Jaccard index measures the similarity between the successive networks, 
with a higher Jaccard index signaling more similar structures between two 
networks (Ripley et al., 2020). 
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3.2.2. Access to resources 
This variable include three indicators. Political Position. Politicians 

were categorized based on their positions as governor or legislators, 
which included House Representatives and Senators. A dummy variable 
was created: 1 = Legislator (N = 531), 0 = Governor (N = 50). Level of 
Jurisdiction. Health agencies were categorized into four ordinal groups 
to reflect their level of jurisdiction: 1 = Sub-state (N = 3, 3.6%), 2 =
State (N = 48, 57.8%), 3 = Regional (N = 10, 12.0%), 4 = Global or 
federal (N = 22, 26.5%). Financial Resources. For politicians, we ob
tained raw records of campaign donations they received from the 
Campaign Finance Institute (2020) . The campaign finance was calcu
lated as the sum of money raised in a politician’s most recent election 
year (2020 excluded). Since the raw number was highly skewed, we 
performed a log transformation on this variable (M = 14.73, SD = 1.10). 
For health agencies, we searched for the amount of budget (in billion) for 
the recent fiscal year. A log transformation was performed on this var
iable to reduce skewness (M = − 0.06, SD = 2.52). The budget data for 
the ten regional Offices of the Assistant Secretary for Health (OASH) 
were missing because they were not publicly available. 

3.2.3. Policy position 
We examined politicians’ and health agencies’ policy core beliefs as 

their policy positions expressed through tweets. Social media can be 
used to broadcast beliefs and policies and influence followers (Barberá, 
2015). Following Kleinnijenhuis and de Nooy (2013), the current study 
measured policy positions by two steps (details in Appendix E). 

3.2.4. Expression of certainty and sensemaking 
We measured the three message-level variables applying the Lin

guistic Inquiry and Word Count (LIWC) 2015. LIWC is a program 
gauging linguistic and psychological features of texts based on built-in 
dictionaries (Tausczik & Pennebaker, 2010). Expressions of certainty 
can be detected through linguistic patterns (Szarvas et al., 2012). Pre
vious research has shown that LIWC can produce a reliable measure of 
certainty in communication (Himelboim et al., 2020). Therefore, cer
tainty in tweets was measured by the percentage of words reflecting 
certainty in LIWC’s built-in dictionary (e.g., always, never). 

Sensemaking is measured by two indicators: (1) use of numbers was 
calculated as the percentage of numbers in tweets; (2) use of analytic 
language was measured using LIWC’s built-in metric, which captures the 
extent to which the text contained words reflecting formal and logical 
thinking (Tausczik & Pennebaker, 2010). Like policy positions, only the 

first two periods’ measures were needed in the SIENA model. Thus the 
three measures were calculated for period 1 (certainty: M = 0.27, SD =
0.86; number: M = 0.80, SD = 2.05; analytical thinking: M = 35.98, SD 
= 45.11) and period 2 (certainty: M = 0.93, SD = 1.13; number: M =
2.72, SD = 2.74; analytical thinking: M = 76.76, SD = 30.89). 

3.2.5. Covariates 
We also controlled for the number of cases per 100 K residents, state 

unemployment rate, and accounts’ Twitter information. Number of 
Cases per 100K Residents. As politicians might react accordingly in line 
with the severity of the pandemic in their jurisdiction, we control for the 
number of confirmed cases in each state which was retrieved from the 
Johns Hopkins University Coronavirus Resource Center (2020). This 
variable was also time-variant and logged due to high skewness. The 
descriptives for each period were: period 1 (M = 0.43, SD = 0.92), 
period 2 (M = 10.65, SD = 1.52). Since the variable was aggregated at 
the state level, politicians in the same states shared identical values. 
State Unemployment Rate. We used the official unemployment rate 
from the U.S. Bureau of Labor Statistics (2020). The pandemic has 
presented serious economic challenges to each state. Relief funding and 
stimulus checks are all hot debate topics along with the development of 
COVID-19 response policies. Therefore, we included the unemployment 
to account for the economic impact potentially due to COVID-19 (Li 
et al., 2021). The variable was time-variant. The means and standard 
deviations for each period were: period 1 (M = 3.55, SD = 0.69), period 
2 (M = 4.37, SD = 1.10). Twitter Account Information. To control for 
actors’ overall activity on Twitter, we extracted number of followers (M 
= 10.56, SD = 1.44) and number of friends (M = 6.66, SD = 1.27) for 
each account. These account-related measures can also exert influence 
over the engagement on Twitter, which is the key outcome element in 
the current study. The variables were logged due to high skewness. 

It is necessary to note that while both ACF and CERC help to identify 
exogenous variables that could shape the chance of tie formation, MTML 
recognizes that networks, once form, their evolutions may also be 
influenced by endogenous variables (also known as structural effects) 
that are characteristics of relations within the networks (Monge & 
Contractor, 2003). In our models, we also controlled for important 
structural effects: politician activity, health agency popularity and 
transitivity. Fig. 3 illustrates the relationship among the variables 
especially how different set of variables were derived from ACF, CERC, 
and social network theory under the guidance of MTML. 

Fig. 1. Data processing pipeline.  
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3.3. Analytical procedure 

To analyze the longitudinal dynamics in the bipartite network, we 
employed the Stochastic Actor-Oriented Model (SAOM) in SIENA 
(Simulation Investigation for Empirical Network Analysis) (Snijders 
et al., 2010). We chose SAOM for two reasons. First, the model estimates 
network evolution based on both endogenous structural effects and 

exogenous actor characteristics. Second, SAOM assumes that actors 
know each other and can make decisions on tie formation autono
mously. This corresponds to the politician-health-agency Twitter 
network as American politicians actively use Twitter and their attention 
to public health agencies should have increased during the COVID-19 
pandemic. The outcome variables were the three politician-health 
agency message-sharing networks. In two-mode network analysis, only 

Fig. 2. Politicians-health agencies retweeting networks at three periods in COVID-19 pandemic.  
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one type of actor can change the outgoing ties. In our case, only the 
politicians could send out ties (i.e., retweet messages from health 
agencies on Twitter). Please see Appendix F for details about our model 
specification. The R package RSiena (Ripley et al., 2020) was used to 
simulate and estimate the models. 

4. Results 

4.1. Network descriptives and endogenous network effects 

The three networks each contained the same 664 actors (581 poli
ticians and 83 health agencies). The density of the networks rose from 
period 1 to period 2, and increased slightly from period 2 to period 3 
(period 1 = 0.002; period 2 = 0.005; period 3 = 0.006). Average degrees 
showed a similar pattern (period 1 = 0.151; period 2 = 0.456; period 3 
= 0.535), so did the number of ties (period 1 = 88; period 2 = 265; 
period 3 = 311). These results suggest that the interactions over COVID- 
19 related topics between health agencies and politicians increased as 
the COVID-19 situation in the U.S. worsened. Furthermore, tie change 
patterns demonstrated that the distances and Jaccard indices between 
periods also climbed over time (period 1 - > period 2: distance = 275, 
Jaccard = 0.124; period 2 - > period 3: distance = 358, Jaccard =
0.233). This indicates that the message-sharing networks of the three 
periods have notable changes. 

Table 1 summarized the results of our SIENA models, with Model 1 
reporting results testing the ACF framework (H1 to H3) and Model 2 
displaying results testing the CERC framework (H4 and H5). The full 
model combining both frameworks is reported in Model 3. The overall 
maximum convergence ratios for all models were smaller than 0.18 and 
the convergence of t-ratios for all reported estimates were smaller than 
0.03 in absolute values, suggesting excellent convergence for all models 
(Ripley et al., 2020). Wald-type tests for joint significance were also 
performed. Overall, the significant chi-square statistics for the models 
provided strong evidence that the network dynamics between politi
cians and health agencies on Twitter depended both on the endogenous 
network effects and exogenous covariates informed by ACF and CERC. 

The significant and positive rate parameters suggested that, on 
average, there were more changes in how politicians shared messages 
from health agencies during period 1 than in period 2. The outdegree 

density parameters were negative across all models, suggesting that 
politicians generally did not retweet health agencies. Three structural 
effects were significant across models. The significant 4-cycles (transi
tive closure) effect showed that retweeting behaviors by other politi
cians would affect how connected politicians retweet health agencies. 
Both indegree popularity and outdegree activity effects were significant, 
demonstrating “the richer get richer effect” in tie formation. In addition, 
the inclusion of the three endogenous effects improved our models’ 
good-of-fit compared with the null model (See Appendix G). 

4.2. Hypothesis testing 

H1 proposed that politicians from the same party would share the 
messages from the same health agencies. We tested this hypothesis using 
the ego-in-alter distance 2 similarity parameter (simEgoInDist2), which 
measured if politicians with the same party affiliation tended to retweet 
the same health agency. This is similar to homophily effects in one-mode 
networks. The positive and significant ego-in-alter distance 2 effect 
supported H1 (Table 1 Model 1), showing that politicians retweeted the 
same health agencies as others from their own party did. 

H2 hypothesized that the financial resources were predictive of tie 
formation. According to Table 1 Model 1, there was no significant effect 
for the amount of campaign finance of a politician; H2a is rejected. 
However, the amount of annual budget for health agencies significantly 
predicted network ties formation, indicating that health agencies with 
more financial resources were preferred by politicians on Twitter. Thus 
H2b was supported. 

Our RQ asked how actors’ political positions affected tie formation. 
We found that being a House representative or Senator decreased the 
odds of retweeting a health agency while governors are more likely to 
share messages from health agencies. For the health agencies, the level 
of jurisdiction was significantly associated with the chance of being 
retweeted. Local health agencies were more likely to be retweeted 
compared with state and national agencies. These patterns revealed a 
tendency towards local clustering, where state governors were more 
likely to retweet local health agencies whereas national-level agencies 
were less retweeted by politicians. 

H3 postulated that politicians’ are more likely to share messages 
from the health agency with congruent COVID-19 policy positions. We 

Fig. 3. Variables derived from ACF, CERC, and social network theory under the MTML framework (control variables omitted).  
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tested this hypothesis on five core policies: policies related to 1) contact- 
tracing, 2) self-protection, 3) relief funding, 4) medical response, and 5) 
vaccination. An interaction term between the policy belief of politicians 
(egoX) and that of health agencies (alterX) was added for each of the 
policies (Table 1 Model 1). A positive interaction score means politicians 
were more likely to retweet the messages from health agencies with a 
similar position on the same policy. The results suggested that the 
similarity of core beliefs in all policies, except for medical response, 
were significant and positive predictors of politicians’ retweeting of 
health agencies. Therefore, H3 was supported. 

Results showed that ACF theory could explain the dynamics of 
retweeting network evolution. The parameters could be interpreted in 
probabilistic terms (Ripley et al., 2020). A density coefficient of − 6.353 
suggested that the baseline conditional probability of a politician 
retweeting a health agency was 0.002. The similarity of positions on 
vaccine-related policies had the strongest effect, which increased the 
chance of message sharing by a politician from 0.002 to 0.022. We also 
found that legislators tended not to retweet health agencies compared to 
governors (estimate = − 0.858, p < .001) while health agencies at the 
local-level (estimate = − 0.643, p < .001) or with larger amount of 
budget (estimate = 0.105, p < .001) were more likely to be retweeted. 

Table 1 Model 2 presents the results of testing H4 and H5. Supporting 
H4, results, suggested that health agencies with higher levels of 

expression of certainty (estimate = 0.301, p < .001) tended to be 
retweeted. H5 tested if the use of numbers and analytical words in 
messages promoted politicians’ message sharing. The results lent partial 
support to H5. Using numbers when talking about COVID-19 was not 
significantly associated with politicians’ message sharing (estimate =
0.001, p > .050). Yet, health agencies with more analytical tones in their 
message garnered more retweets from politicians (estimate = 0.024, p <
.001). 

Informed by the MTML framework, variables from both ACF and 
CERC were further integrated into one full model (Table 1 Model 3). The 
results remained consistent with previous models but the model 
explained more variance, suggesting that ACF and CERC provide a 
complementary explanation to account for the dynamics of the message 
sharing network. 

5. Discussion 

In this study, we propose a multi-theoretical and multi-level (MTML) 
framework to explain communication processes centered around a 
politicized public health crisis. Specifically, we focus on U.S. politicians’ 
sharing of health agencies’ messages on Twitter during the COVID-19 
pandemic as an example. Bringing together insights from the advocacy 
coalition framework (ACF) (Jenkins-Smith & Sabatier, 2003; Sabatier & 

Table 1 
Estimated stochastic actor-based models for two-mode network (politicians = 581, health agencies = 83, periods = 3)a.   

Model 1 (ACF) Model 2 (CERC) Model 3 (Full) 

Effects Estimate SE Estimate SE Estimate SE 

Rate function 
Rate (period 1) 2.379*** .293 2.468*** .357 2.787*** .437 
Rate (period 2) 2.228*** .183 2.699*** .268 2.203*** .181 

Endogenous network effects 
Outdegree (density) − 6.353*** .168 − 6.171*** .163 − 6.541*** .173 
4-cycles .061*** .024 .062*** .015 .060* .015 
Outdegree activity .462*** .050 .281*** .044 .394*** .045 
Indegree popularity .019*** .003 .014*** .002 .015*** .002 

Exogenous network variables: ACF 
Party affiliation homophily 1.534*** .197   1.643*** .211 

Politician resources 
Campaign finance .044 .057   .026 .056 
Political position − .858*** .192   − .826*** .186 

Health agency resources 
Level of jurisdiction − .634*** .118   − .335*** .131 
Budget .105*** .022   .066*** .020 

Politicians ⨉ health agency policy position 
Contact tracing 1.951* .892   1.943* .912 
Self-protection 1.474* .654   1.173* .591 
Relief funding 1.043* .410   .845* .382 
Medical response 1.323 .810   1.000 .747 
Vaccine 2.580* 1.125   2.240* 1.020 

Exogenous network variables: CERC 
Health agency 

Certainty   .301*** .075 .297*** .078 
Use of Numbers   .001 .024 − .026 .024 
Analytics   .024*** .005 .025*** .004 
Politician 
Certainty   − .022 .062 − .045 .064 
Use of Numbers   .024 .027 .007 .030 
Analytics   .002 .004 .006** .002 

Covariates: Politician 
COVID-19 case − .025 .042 − .100** .039 − .092* .046 
Unemployment rate .147* .061 .171** .063 .152* .061 
Twitter followers .049 .051 − .148** .051 .054 .051 
Twitter friends .261*** .049 − .081 .055 .252*** .048 

Covariates: Health agency 
COVID-19 case − .055 .040 − .025 .035 .019 .042 
Unemployment rate .113 .074 .108 .066 .084 .071 
Twitter followers .589*** .057 .308** .045 .461*** .052 
Twitter friends − .336*** .069 − .304*** .070 − .312** .064 
Wald χ2 statistics (df) 162.65***(9) 20.96***(3) 210.75***(16) 

Note: ***p < .001, **p < .010, *p < .050, †p < .100. 
a Convergence t-ratios for all effects < |0.03|. 
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Jenkins-Smith, 1988) and the Crisis and Emergency Risk Communica
tion (CERC) framework (Veil et al., 2008), we conceptualized that pol
iticians’ message-sharing behaviors are driven by the dual process of 
advancing their policy interests and dutifully conducting risk 
communication. 

Recent studies have embarked on explaining how the public receive 
and share information from governmental agencies, politicians, and 
public health agencies during the pandemic (Kim et al., 2021; Li et al., 
2022; Malik et al., 2021; Zhou et al., 2022). However, we know little 
about how elite communicators such as politicians share information 
from health agencies. Our study fills this research gap by revealing that 
politicians’ message-sharing behaviors are explained by policy advocacy 
and risk communication at the same time. A summary of the results can 
be found in Table 2. 

5.1. Fractured policy advocacy during COVID-19 

Overall, the bipartite network containing U.S. politicians and health 
agencies illustrated a structural tendency of the political divide and 
state-level clustering. The political divide is driven both by divergence in 
politicians’ party affiliations and COVID-19 response policies. In terms 
of party affiliation, our analysis reveals a significant tendency for poli
ticians to share messages from health agencies with whom their in-group 
partisans have established retweeting ties. This pattern of retweets 
contributes to the formation of distinctive information sources and 
distribution networks that distinguish different public policy coalitions. 
This result resonates with findings from Zhou et al. (2023), which sug
gests U.S. politicians largely politicized the discourse about COVID-19 
vaccine on social media. Given that the ideological divide in local pol
itics can sway public engagement of vaccine information (Zhou et al., 
2022), the partisan information sharing may also influence public 
engagement of policy communication. 

Consistent with predictions derived from ACF (Jenkins-Smith & 
Sabatier, 2003; Sabatier & Jenkins-Smith, 1988), we found that politi
cians’ position in COVID-19 response policies could significantly drive 
their message-sharing patterns. Specifically, we identified five major 
policies: contact tracing policies, self-protection policies, government 
funding policies, medical response policies, and vaccine development 

and rollout policies. With the exception of medical response policies, we 
found agreement on most of these policies drives tie formation. In other 
words, politicians agreeing with health agencies on those policies are 
more likely to retweet their messages, likely using health agencies’ 
messages as evidence to support their own policy positions. Although 
ACF has been widely supported by studies looking at politicians’ voting 
patterns (Heaney & Rojas, 2008; Pierce et al., 2017; Weible, 2005), to 
our best knowledge, this is the first study to demonstrate the influence of 
politicians’ policy positions on their social-mediated communication 
patterns. This finding contributes new insights into our understanding of 
the political divide among politicians. That is, the observed political 
divide on social media is not simply driven by dichotomized ideological 
differences but also fuelled by nuanced disagreement on various public 
policies. 

Importantly, we also observed that the network tends to cluster 
around state-level actors. What we mean here is that not only state-level 
health agencies are more likely to get retweeted, state governors, in 
comparison to legislators, are also most likely to retweet health agencies 
in general. Moreover, among health agencies with different jurisdic
tions, local and state-level health agencies are far more likely to be 
retweeted, controlling for state-level COVID-19 financial impact (i.e., 
unemployment) and case numbers per capita. This result is particularly 
important as previous research also found that the COVID-19 vaccine 
communication is politicized differently across government agencies’ 
jurisdiction levels (Zhou et al., 2023). This may reflect the different 
functions these politicians serve in the U.S. political system. While 
governors mainly serve as the heads of the executive branch of each 
state, senators (representing whole states) and congressmen/women 
(representing districts) serve the legislative branch. As such, it makes 
sense that the governors were more likely to share information from 
health agencies as a function of their offices. Our results thus offer a 
more nuanced understanding of information sharing pattern among 
politicians beyond treating them as a homologue in previous research 
(Zhou et al., 2023). 

In addition, in the U.S, there is a deep-rooted anti-federalist senti
ment that dates back to the founding days of the nation (Cornell, 1990). 
While the phenomenon is understandable, it presents considerable 
challenges to the handling of a pandemic for two reasons. First, the 
COVID-19 virus does not respect state boundaries. The lack of coordi
nated responses may continue to create inconsistencies in public health 
policies and create hot spots for transmission. Second, federal-level 
health agencies such as CDC have access to considerable scientific in
formation and up-to-date knowledge on variants of the virus and vac
cines, and response measures. However, we found that federal-level 
health agencies did not appear to be retweeted by politicians from 
different states. For federal-level health agencies’ messages to fall 
through the cracks of information diffusion, it may delay speedy re
sponses to emerging epidemic conditions. As such, policy-makers may 
consider certain levels of mandate that require elected officials to 
retweet federal level health agencies in the current and future national 
health crises. 

5.2. Risk communication during COVID-19 

To further look at what type of health agencies’ messages were more 
likely to be shared, we draw from the CERC (Veil et al., 2008), and 
examined linguistic features of messages that drove politicians’ 
retweets. According to CERC, messages that contain a higher level of 
certainty or use more numbers and scientific evidence may help to boost 
the public’s certainty and sensemaking. Consistent with previous liter
ature (Malik et al., 2021), our analysis showed that both linguistic fea
tures that allow uncertainty reduction and sense-making were powerful 
predictors for politicians’ messages sharing behavior over time. Impor
tantly, the use of analytic language is likely to be shared by politicians, 
which may further help mitigate the negative impact of emotion in 
discerning accurate scientific information during crisis (Li et al., 2022). 

Table 2 
Summary of results.  

Hypotheses or Research Question Results 

H1: Politicians are more likely to share 
messages from health agencies if those 
agencies’ tweets were retweeted by 
politicians of the same party than those of 
a different party. 

Supported 

H2a: Politicians with more financial 
resources are more likely to share 
messages from health agencies. 

Rejected 

H2b: Politicians are more likely to share 
messages from health agencies that 
possess more financial resources. 

Supported 

RQ: How do politicians with different 
political positions share messages from 
health agencies with different levels of 
jurisdictions? 

Governors more likely to retweet; 
local agencies were more likely to be 
retweeted. 

H3: Over time, politicians are more likely 
to share messages from health agencies 
that are congruent with their own 
COVID-19 policy positions on social 
media. 

Supported 

H4: Politicians are more likely to share 
messages from health agencies that 
express higher levels of certainty. 

Supported 

H5: Politicians are more likely to share 
messages from health agencies that use 
more numbers, statistics, and analytic 
words. 

Partially supported  
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Consistent with previous risk communication research (Austin et al., 
2012), we found that message linguistic features could elicit different 
responses. While previous studies tend to focus on the general public’s 
responses to only a few leading health agencies (Malik et al., 2021), our 
study examined politicians’ retweeting behaviors with a wide range of 
health agencies. Our finding has implications for future health agencies’ 
social-mediated crisis and risk communication. Since politicians will 
continue to command considerable influence on social media and the 
public, public health agencies should proactively incorporate message 
features that drive politicians’ retweets and leverage their influence to 
reach out to the public who are concerned about misinformation in risk 
communication context (Zhang & Cozma, 2022). 

5.3. Conclusion, limitations, and future research 

An important contribution of our study is that we illustrate that the 
complexity of social crisis requires social scientists to adopt more ho
listic theoretical angles by removing arbitrary boundaries between 
subfields of social science, and bring relevant theories together in a 
meaningful way. Using the current study as an example, ACF emphasizes 
power dynamics in the policy communication process. Meanwhile, 
public policy communication often deals with and is informed by 
knowledge and expertise from scientific domains such as medical sci
ence. The original ACF thus could not adequately explain how concerns 
for the publics’ understanding of risk would play a role in the process of 
public policy communication. On the other hand, the CERC framework 
focuses on the ideal component of risk communication, with the 
assumption that government agencies and politicians would work 
seamlessly to communicate effective messages. However, the realities of 
the COVID-19 pandemic remind us that public health messages are often 
influenced by political considerations in public policy communication. 

By integrating the two theories under MTML, we conceptualize the 
politicalized health risk communication as a process where consider
ations for political interests and public health both shape network for
mation and evolution. The process involves message framing and 
dissemination. While public health agencies’ institutional logic imprint 
their messages, once such messages enter the networks of politicians, the 
dual logic of policy coalition advocacy and risk communications both 
shape how far and where such messages disseminate in political net
works. The integrated framework thus reveals insights neither theory 
could fully provide. It is important to note that our proposed framework 
is not only useful for analysing the previous pandemic, but could be 

applied to studies of future COVID-19 waves or other types of major 
societal crises because similar dual logic may continue to govern how 
politicians communicate. 

Our study has limitations. Our sample focused on politicians’ 
retweets of health agencies. It is likely that politicians also share health 
agencies’ messages on other platforms. With additional data collected 
from multiple platforms, future studies may examine if communication 
patterns show differences across platforms. Though we focused on the 
early stage of the pandemic, the proposed theoretical framework and 
method is applicable to later COVID-19 waves once additional data is 
available. Moreover, we only studied message senders’ behaviors 
without considering how the publics may respond to politicians’ tweets. 
Future studies may adopt multiple perspectives and compare if the 
publics’ responses differ when they receive similar messages from 
different politicians, and if a coordinated communication approach 
could improve communication outcomes. In short, the COVID-19 
pandemic has laid bare many problems in the current political and 
public health communication system. Continued research is needed to 
identify existing issues and provide recommendations for coping with 
future challenges. 
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Appendix A 

Keywords and Added Date for Data Collection on Twitter4   

Coronavirus 1/28/2020 Social Distancing 3/13/2020 staysafestayhome 3/18/2020 

Koronavirus 1/28/2020 SocialDistancing 3/13/2020 stay safe stay home 3/18/2020 
Corona 1/28/2020 panicbuy 3/14/2020 trumppandemic 3/18/2020 
CDC 1/28/2020 panic buy 3/14/2020 trump pandemic 3/18/2020 
Wuhancoronavirus 1/28/2020 panicbuying 3/14/2020 flattenthecurve 3/18/2020 
Wuhanlockdown 1/28/2020 panic buying 3/14/2020 flatten the curve 3/18/2020 
Ncov 1/28/2020 14DayQuarantine 3/14/2020 china virus 3/18/2020 
Wuhan 1/28/2020 DuringMy14DayQuarantine 3/14/2020 chinavirus 3/18/2020 
N95 1/28/2020 panic shop 3/14/2020 quarentinelife 3/19/2020 
Kungflu 1/28/2020 panic shopping 3/14/2020 PPEshortage 3/19/2020 
Epidemic 1/28/2020 panicshop 3/14/2020 saferathome 3/19/2020 
outbreak 1/28/2020 InMyQuarantineSurvivalKit 3/14/2020 stayathome 3/19/2020 
Sinophobia 1/28/2020 panic-buy 3/14/2020 stay at home 3/19/2020 
China 1/28/2020 4/24/2020 panic-shop 3/14/2020 stay home 3/19/2020 

(continued on next page) 

4 Retrieved from: https://github.com/echen102/COVID-19-TweetIDs/blob/master/keywords.txt. 
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(continued ) 

Coronavirus 1/28/2020 Social Distancing 3/13/2020 staysafestayhome 3/18/2020 

covid-19 2/16/2020 coronakindness 3/15/2020 stayhome 3/19/2020 
corona virus February 3, 2020 quarantinelife 3/16/2020 GetMePPE 3/21/2020 
covid June 3, 2020 chinese virus 3/16/2020 covidiot 3/26/2020 
covid19 June 3, 2020 chinesevirus 3/16/2020 epitwitter 3/28/2020 
sars-cov-2 June 3, 2020 stayhomechallenge 3/16/2020 pandemie 3/31/2020 
COVIDー19 August 3, 2020 stay home challenge 3/16/2020 wear a mask 6/28/2020 
COVD December 3, 2020 sflockdown 3/16/2020 wearamask 6/28/2020 
pandemic December 3, 2020 DontBeASpreader 3/16/2020 kung flu 6/28/2020 
coronapocalypse 3/13/2020 lockdown 3/16/2020 covididiot 6/28/2020 
canceleverything 3/13/2020 lock down 3/16/2020 COVID__19 September 7, 2020 
Coronials 3/13/2020 shelteringinplace 3/18/2020  
SocialDistancingNow 3/13/2020 sheltering in place 3/18/2020   

Appendix B 

We composed a list of health agencies and their official Twitter handles (see Appendix-Table 1), including one international agency World Health 
Organization and 83 U.S. agencies. The U.S. agencies are divided into four levels: sub-state, state, regional, and federal. 

As for the sub-state and state levels, we identified one health agency for each state and Washington D.C. according to two resources (CDC, 2020; 
Ensign, 2019). If an agency has the highest jurisdiction regarding the state’s health decisions, it was coded as state level; otherwise, it was coded as 
sub-state level. When two different health agencies were identified for the same state, we decided to include the one with higher jurisdiction. For 
example, when the New Hampshire Department of Health and Human Services and its Division of Public Health Services were both selected and active 
on Twitter, the latter one was excluded given the lower jurisdiction. However, there is one exception where we included the Maine Center for Disease 
Control and Prevention (Maine CDC) instead of the Maine Department of Health and Human Services (Maine DHHS) for the reason that Maine CDC 
was much more active (more followers and tweets in total) and shared more COVID-19 relevant information than the Maine DHHS on Twitter. In this 
case, the Maine health agency was coded as sub-state level. 

As for regional and federal levels, we included the U.S. Department of Health and Human Services and all COVID-19 relevant organizations under 
its umbrella when official Twitter accounts existed (HHS Digital Communications Division, 2008). The exclusion criteria are: (1) not directly relating 
to COVID-19 (i.e., Agency for Toxic Substances and Disease Registry), (2) involving no public engagement responsibility (i.e., Assistant Secretary for 
Administration). More than one Twitter handle was kept on our list depending on representativeness and relevancy for salient organizations like the 
Centers for Disease Control and Prevention (CDC). In the CDC case, we included its official Twitter source @CDCgov and the handle for its Center for 
Preparedness and Response (CPR), @CDCemergency.  

List of Health Agencies  

No. Twitter Account ID Health Agencies Level 

1 146,569,971 Centers for Disease Control and Prevention (CDC) Federal/Global 
2 15,134,240 National Institutes of Health (NIH) Federal/Global 
3 24,959,108 Substance Abuse and Mental Health Services Administration Federal/Global 
4 44,034,613 Health Resources and Services Administration (HRSA) Federal/Global 
5 44,783,853 Department of Health & Human Services (HHS) Federal/Global 
6 44,957,814 Agency for Healthcare Research and Quality (AHRQ) Federal/Global 
7 455,024,343 Surgeon General (Head of United States Public Health Service Commissioned Corps) PHSCC Federal/Global 
8 911,306,494,536,224,000 Indian Health Service (IHS) Federal/Global 
9 14,499,829 WHO Federal/Global 
10 138,530,516 Office of Disease Prevention and Health Promotion (ODPHP) Federal/Global 
11 538,456,752 Office of the Assistant Secretary for Health (OASH) Federal/Global 
12 137,450,696 Office of the Assistant Secretary for Preparedness and Response (ASPR) Federal/Global 
13 208,120,290 Food and Drug Administration (FDA) Federal/Global 
14 59,769,395 National Institute of Allergy and Infectious Diseases (NIAID) Federal/Global 
15 106,895,787 National Library of Medicine (NLM) Federal/Global 
16 70,837,868 Centers for Medicare & Medicaid Services (CMS) Federal/Global 
17 820,236,583 Administration for Community Living (ACL) Federal/Global 
18 1,337,539,945 Administration for Children and Families (ACF) Federal/Global 
19 2,827,049,413 Office for Civil Rights (OCR) Federal/Global 
20 291,759,889 Office of Inspector General (OIG) Federal/Global 
21 39,250,316 National Institute of Mental Health (NIMH) Federal/Global 
22 108,638,625 Office of the National Coordinator for Health IT (ONC) Federal/Global 
23 2,363,238,127 HHS-Region 5 Chicago Regional 
24 2,910,903,323 HHS-Region 3 Philadelphia Regional 
25 3,177,403,355 HHS-Region 10 Seattle Regional 
26 407,228,333 HHS-Region 1 Boston Regional 
27 414,860,556 HHS-Region 7 Kansas City Regional 
28 418,859,255 HHS-Region 4 Atlanta Regional 
29 426,033,838 HHS-Region 8 Denver Regional 
30 431,100,994 HHS-Region 9 San Francisco Regional 
31 460,473,395 HHS-Region 2 New York Regional 
32 460,534,166 HHS-Region 6 Dallas Regional 
33 1,019,591,965,766,119,425 Wyoming Department of Health State 
34 111,630,094 Arkansas Department of Health State 

(continued on next page) 
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(continued ) 

No. Twitter Account ID Health Agencies Level 

35 117,793,973 District of Columbia Department of Health State 
36 123,926,499 New York State Department of Health State 
37 1,465,196,934 New Mexico Department of Health State 
38 151,175,266 Oregon Health Authority, Public Health Division Sub-State 
39 16,100,741 Mississippi State Department of Health State 
40 1,667,792,120 North Carolina Department of Health and Human Services State 
41 16,952,753 Arizona Department of Health Services State 
42 176,892,371 Louisiana Department of Health State 
43 188,369,254 Virginia Department of Health State 
44 19,797,326 Alaska Department of Health and Social Services State 
45 209,599,290 South Carolina Department of Health and Environmental Control State 
46 2,339,177,324 Kentucky Department for Public Health State 
47 2,353,731,720 West Virginia Department of Health and Human Resources, Bureau for Public Health Sub-State 
48 23,711,785 Massachusetts Department of Public Health State 
49 25,149,628 Minnesota Department of Health State 
50 252,114,970 New Jersey Department of Health State 
51 2,535,616,304 South Dakota Department of Health State 
52 26,042,513 New Hampshire Department of Health and Human Services State 
53 61,562,609 Maine Department of Health and Human Services, Center for Disease Control and Prevention Sub-State 
54 293,028,988 Wisconsin Department of Health Services State 
55 296,814,488 Florida Department of Health State 
56 318,509,758 Idaho Department of Health and Welfare State 
57 3,218,464,527 Pennsylvania Department of Health State 
58 323,311,059 Alabama Department of Public Health State 
59 325,113,018 Georgia Department of Public Health State 
60 331,244,103 Colorado Department of Public Health and Environment State 
61 33,934,492 California Department of Public Health State 
62 35,239,459 Rhode Island Department of Health State 
63 35,789,875 Connecticut State Department of Public Health State 
64 35,820,178 Vermont Department of Health State 
65 36,099,461 Utah Department of Health State 
66 36,790,269 Iowa Department of Public Health State 
67 3,996,166,572 Montana Department of Public Health and Human Services State 
68 44,961,877 Maryland Department of Health State 
69 454,138,567 Oklahoma State Department of Health State 
70 47,356,175 Delaware Division of Public Health Sub-State 
71 57,338,289 Michigan Department of Health and Human Services State 
72 584,069,282 Indiana State Department of Health State 
73 59,545,968 Washington State Department of Health State 
74 65,677,968 Nebraska Department of Health and Human Services State 
75 68,412,042 Texas Department of State Health Services State 
76 70,775,228 Kansas Department of Health and Environment State 
77 71,652,085 Illinois Department of Public Health State 
78 76,761,964 Missouri Department of Health and Senior Services State 
79 78,450,167 Hawaii State Department of Health State 
80 815,379,032 North Dakota Department of Health State 
81 84,678,363 Tennessee Department of Health State 
82 90,422,822 Ohio Department of Health State 
83 910,239,254,894,088,192 Nevada Division of Public and Behavioral Health Sub-State  

Appendix C 

Jaccard Indices Based on Two Breakpoints. 
Note. X-axis represents the two-mode Twitter messaging sharing network in the preceding day, and the y-axis indicates the network in the 

following day. Yellow colors signal larger shifts in Jaccard Indices, which indicates significant changes between successive networks. 
We used March 1 as the first time point to break down our network because CDC announced the state of emergency after the first fatal COVID-19 

case in the United States on that day (CDC, 2020). This choice is supported by a large increase in the Jaccard index that occurs around the date. The 
Jaccard index stayed relatively stable after March 1 until it started to drop on June 12, which was chosen as our second breakpoint for our network 
analysis. Starting from June 13, new infections surged and the second peak in COVID-19 cases emerged (CDC, 2020). These breakpoints are consistent 
with temporal locations identified in studies that utilized the same dataset, investigating the 2020 USA Elections (Chang et al., 2022).  
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Appendix D 

Distribution of tie strengths across three periods. 
Since the three waves vary in length, we also calculated daily interaction volumes in each network to provide a direct comparison of the con

nectivities in the three networks: Wave 1 (37 days): 687 total interactions, 136 unique interactions, 18.56 tweets per day. Wave 2 (106 days): 1361 
total interactions, 470 unique interactions, 12.84 tweets per day. Wave 3 (141 days): 5218 total interactions, 872 unique interactions, 37.01 tweets per 
day.  

. 

Appendix E 

Policy position. 
Following Kleinnijenhuis and de Nooy (2013), the current study measured policy positions by two steps. First, we applied topic modeling with 

Latent Dirichlet Allocation (Blei et al., 2003) to extract topics from tweets in our example. We identified five major policies discussed by politicians in 
their tweets: policies related to 1) contact-tracing; 2) self-protection (e.g. social distancing and mask mandates); 3) relief funding, 4) medical response 
(e.g. supplying testing kits and personal protective equipment (PPE) for healthcare professionals), and 5) vaccination. To avoid missing any significant 
policies related to COVID-19, we also created a bigram of words co-occurrence and manually checked the word pairs that occurred more than 10 times 
in our dataset. The five policies were covered by the bigram list and no additional policies were identified. Then, we built a policy dictionary based on 
the LDA results and the bigram list. A tweet was assigned to a policy or multiple policies if it hits one or more keywords of the policy categor
y/categories. The dictionary can be found in Appendix-Table 2.  
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Keywords and Descriptive Statistics of Policy Positions  

Policies Keywords Period 1 Period 2 

N Mean SD N Mean SD 

Contact 
tracing 

“contact tracing”, “in contact with”, “contact tracer”, “been exposed”, “monitor your health”, “monitor your 
symptoms”, “seek medical care”, “signs and symptoms”, “close contact" 

12 0.16 0.46 50 0.11 0.54 

Self-protection “stay-at-home”, “stay home”, “away from others”, “social distancing”, “keep distance”, “physical distancing”, 
“six feet”, “6 feet”, “avoid crowds”, “nonessential travel”, “avoid travelers”, “self-isolate”, “self-quarantine”, 
“avoid contact”, “quarantine”, “avoid travel”, “recently returned”, “hygiene”, “avoid touching nose”, “touch 
mouth”, “hand sanitizer”, “wash hand”, “mask”, “wear a mask”, “wear masks”, “cover cough”, “cover sneeze”, 
“cover”, “throw used tissues”, “disinfect”, “take your temperature”, “wear glove”, “cloth face covering”, 
“surgical mask”, “n95 mask”, “preventive measures”, “precautions”, “protect yourself”, “fresh air”, “ventilate" 

37 0.06 0.46 194 0.23 0.47 

Relief funding “emergency funding”, “funding”, “funds”, “federal fund”, “bill”, “money”, “supplemental funding”, “relief 
package”, “relief fund”, “stimulus package”, “stimulus check”, “paycheck”, “unemployment insurance”, 
“unemployment benefits”, “unemployment aid”, “healthcare insurance”, “insurance coverage”, “health 
insurance”, “direct payments”, “recovery grants”, “financial assistance”, “assistance program”, “response 
package”, “CARES Act”, “HEROES Act”, “TRACE Act”, “ENCORES Act”, “HEALS act”, “resource”, “economic 
security”, “defer tax”, “financing”, “SNAP”, “affordable”, “financial support”, “cover the cost" 

35 − 0.04 0.57 267 0.24 0.43 

Medical 
response 

“test”, “get tested”, “getting tested”, “testing”, “community testing”, “testing kits”, “testing sites”, “screening”, 
“diagnostics”, “diagnostic test”, “personal protective equipment”, “PPE”, “ventilator”, “ICU”, “equipment”, 
“medical supplies”, “frontline”, “health professionals”, “nurses”, “healthcare professionals”, “monitor”, “first 
responder”, “long term care”, “longtermcare”, “contact tracing”, “swab" 

62 0.13 0.32 264 0.30 0.40 

Vaccination “vaccine”, “antibody”, “vaccinations”, “treatment”, “immune”, “mRNA”, “viral vector”, “vector vaccine”, 
“BioNTech”, “Fosun Pharma”, “Pfizer”, “Moderna”, “NIAID”, “dose”, “shot”, “clinical trials”, “Phase 3″, 
“AstraZeneca”, “Janssen”, “Novavax" 

17 0.10 0.50 69 0.30 0.40  

Next, we performed sentiment analysis using VADER (Valence Aware Dictionary for Sentiment Reasoning) on tweets related to the aforementioned 
policies. VADER is a dictionary-based sentiment method commonly applied by researchers (Hutto & Gilbert, 2014). The score ranged from − 1 to +1 
with positive scores indicating a more positive attitude on a certain policy. If a node (i.e., a politician or health agency) had multiple tweets about the 
same policy, the sentiment scores for each tweet were averaged to reflect the general attitude of the node toward that policy. If a node did not mention 
a policy, we coded the variable’s policy position as missing. Note that nodes’ policy positions may change across the time periods. When there are 
changing explanatory variables across different time periods, SIENA model uses the value of the variable in the preceding period to predict the 
network change in the following period (Ripley et al., 2020). Because we have three time periods in the analysis, only policy positions in the first two 
periods were measured. In general, politicians and health agencies talked more about policies responding to COVID-19 with more positive attitudes in 
period 2 than in period 1. 

Appendix F 

Model specification. 
We used the function below to estimate the effects of both endogenous and exogenous effects as a linear combination of the probability of the 

network change at the level of the focal actors: 

f
(
xij
)
=
∑

k
βksijk

(
xij
)
+
∑

l
βleil

(
xij
)
+
∑

m
βmαjm

(
xij
)
+ ε (1)  

where k, l, and m were the number of parameters β, s were the structural effects, e represented the effects of politicians’ characteristics of politicians, α 
represented the effects of health agencies’ attributes, and ε was a random error term. A significant β suggests that the network tends to change in 
direction with its corresponding effect (Snijders et al., 2010). For simplicity, the rate and density effects were omitted in the function as they were 
included in the model as baseline parameters akin to the intercept of a traditional regression model (Ripley et al., 2020). The rate effect for each period 
specified the frequency at which politicians retweeted health agencies. The outdegree density parameter captured the general propensity for poli
ticians to retweet health agencies. 

Though not hypothesized, we also included three common network structural effects in the model. Transitive closure (4-cycles) measured whether 
retweeting the same health agency increases the chance of a pair of politicians retweeting more health agencies together in the future. Indegree 
popularity measured the tendency that a popular health agency retweeted by many politicians retweeting attracted other politicians to retweet it. 
Outdegree activity measured the tendency that a politician actively retweeted many health agencies. The exogenous variables, or network effects 
driven by attributes of politicians and health agencies explained above, were added in the model for hypothesis testing. Table 3 summarizes all the 
effects, and their configurations and mathematical definitions in our model.  

Summary of Endogenous Local Network Effects and Exogenous Actor-Specific Covariates  

Parameter Short name of effects To control for Configuration 
(t1) 

Configuration 
(t2) 

Definition 

Outdegree (density) density Overall tendency to retweet health agencies 
∑

jxij 

(continued on next page) 
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(continued ) 

Parameter Short name of effects To control for Configuration 
(t1) 

Configuration 
(t2) 

Definition 

4-cycles (transitive closure) cycle4 Tendency for pairs of politicians to retweet the 
same health agencies 

1
4

∑

i1 ,i2, j,1 j2

xi1 j1 xi1 j2 xi2 j1 xi2 j2 

Indegree popularity inPop Tendency for politicians to retweet health 
agencies that received many retweets 

∑
jxij(

∑
h∕=ixhj + 1)

Outdegree activity outAct Tendency for politicians who retweet many 
health agencies to retweet another health agency 

x2
i+

Party ego-in-alter distance 2 
similarity 

simEgoInDist2 Tendency for politicians from the same party to 
retweet the same health agencies 

∑

j
xij(sim(v)ij − ŝimv )

Policy attitudes (funding, self- 
protection, medical response) 

interaction between 
egoX and altX 

Tendency for politicians to retweet health 
agencies with similar attitudes on policies 

vixij
∑

jvjxij 

All the other covariates for 
politicians 

egoX Tendency for politicians with certain 
characteristics to retweet health agencies 

vixij 

All the other covariates for 
health agencies 

altX Tendency for health agencies with certain 
characteristics to be retweeted by politicians 

∑
jvjxij 

Note: Dark squares and circles represent politicians and health agencies with a specific attribute. White squares and circles represent politicians and health agencies 
under endogenous effects. Dash lines represent ties not yet existing. Solid lines represent existing ties. For details of each parameter in the effect definition, see (Ripley 
et al., 2020). 

Appendix G 

Goodness-of-fit Diagnostic Plots for Degree Distribution of Politicians (a-b) and Health Agencies (c-d). 
Note. Observed values are indicated by numbers connected by a red line. The simulated statistics are represented by the violin plots. Dotted lines 

give 95th percentile bands. The p-value for the Mahalanobis distance-combination is given at the bottom. 
Violin plots illustrate the observed degree distribution and the simulated statistics during the estimation. The null model only includes the 

transitive closure (4-cycles) and the model fit is less satisfactory. The fit significantly improves after three additional endogenous network structural 
effects (indegree popularity, outdegree activity, and out-in-degree assortative) are included in the full model (see (b) and (d)). The better fit is reflected 
by the red line being closer to the mean of the simulated networks.  
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